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Nomenclature

Introduction
Free convection flow is caused by buoyancy forces which arise from density
differences in a fluid. These density differences are a consequence of
temperature gradients within the fluid. Free convection flow is a significant
factor in  several practical applications which include, for example, cooling of
electronic components. 

There exist relatively few studies concerning the non-Newtonian fluids with
microstructures such as polymeric additives, colloidal suspensions, animal
blood, liquid crystals etc. Eringen (1966) developed the theory of micropolar
fluids which show microrotation effects  as well as microinertia. The theory of
thermomicropolar fluids was developed by Eringen (1972) by extending the
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f = dimensionless velocity function
g = dimensionless microrotation
g
~

= acceleration due to gravity
G* = modified Grashof number parameter
Grx* = Grashof number
h = heat transfer coefficient
j = microinertia per unit mass
k = thermal conductivity of the fluid
Mw = local couple stress
n = constant
N = angular velocity
Nu = Nusselt number
Pr = Prandtl number
qw = surface heat flux
T = temperature

u,v = velocity components
x,y = distance along and normal to the surface
ψ = stream function
µ = viscosity coefficient
ρ = density of the fluid
κ = rotational viscosity coefficient
β = volumetric coefficient of expansion
γ = gyroviscosity coefficient
ξ,η,χ = dimensionless coordinates
θ = dimensionless temperature
∆ = dimensionless material property

Subscripts
w = surface conditions
∞ = reference conditions

The authors are grateful to the reviewers for their helpful comments.
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theory of micropolar fluids. Gorla (1983) investigated the forced convective heat
transfer to a micropolar fluid flow over a flat plate. The free convective heat
transfer to a thermomicropolar fluid along a vertical flat plate was studied by
Jena and Mathur (1981) by means of similarity arguments.

In this paper, we have studied the nonsimilar problem of natural convection
boundary layer flow of a micropolar fluid over a vertical plate with uniform heat
flux boundary  condition. The numerical results revealed the presence of  a two-
layer structure as the distance from the leading edge increases. The existence of
an inner layer close to the wall is due to the restriction imposed by the wall on
the rotation of the microelements in the fluid, as explained by Rees and Bassom
(1996). An asymptotic analysis for large distances away from the leading edge
is presented since accurate numerical results are difficult to obtain in this region
because of the near-wall regime. Numerical results for the friction factor and
Nusselt number are presented for different values of the material parameters
and Prandtl number of the fluid.

Governing equations
Consideration is given to a vertical heated plate immersed  in a micropolar fluid
with a uniform temperature T∞. The governing equations for the steady,
laminar, incompressible, micropolar fluid may be written within the boundary
layer and Boussinesq approximations as:

(1)

(2)

(3)

(4)

The boundary conditions may be written as

(5)

In the above equations, x and y are the coordinates measured along and
perpendicular to the plate; u and v the velocity components in x and y
directions; N the microrotation component in the x-y plane; ρ the density; µ the
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coefficient of viscosity; κ the rotational viscosity coefficient; γ the gyroviscosity
coefficient; j the microinertia density; α the thermal diffusivity and T the
temperature of the fluid.

A comment will be made on the boundary condition used for the
microrotation term. When n = 0, equation (5) yields N(x,0) = 0. This represents
the case of concentrated particle flows in which the microelements close to the
wall are not able to rotate. The case corresponding to n = 1/2 results in the
vanishing of antisymmetric part of  stress tensor and represents weak
concentrations. The particle spin is equal to fluid vorticity at the boundary for
the fine particle suspensions. The case corresponding to n = 1 is representative
of turbulent boundary layer flows. Thus for n = 0, particles are not free to rotate
near the surface, whereas, as n increases from 0 to 1, the microrotation term
gets augmented and induces flow enhancement

We define a stream function Ψ(x,y) such that 

The continuity equation (1) is then automatically satisfied. Proceeding with the
analysis, we define the following dimensionless transformations:

(6)
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On substituting the expressions in equation (6) into equations (2)-(5), we have

(7)

(8)

(9)

The transformed boundary conditions are given by

(10)

In the above equations, a prime indicates differentiation with respect to η only.
The wall shear stress may be written as 

(11)

The local friction factor is defined as

(12)

The local couple stress at the wall is given by

(13)

The local heat transfer coefficient is given by 

(14)

The local Nusselt number is given by

(15)

The case corresponding to ∆=0 gives a similarity solution. This is governed by
the following set of equations:

(16)
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(17)

(18)

Numerical scheme
The numerical scheme to solve equations (7)-(9) is based on the following
concepts:

(a) The boundary conditions for η = ∞ are replaced by

(19)

where ηmax is a sufficiently large value of η where the boundary
condition      for velocity field is satisfied. After confirming that setting
ηmax to higher values would not change the results obtained, we have set
ηmax = 25.

(b) The two-dimensional domain of interest, (ξ,η ) is discretized with an
equispaced mesh in the ξ direction and another equispaced mesh in the
η direction.

(c) The partial derivatives with respect to ξ and η are all valued by the
central difference approximations.

(d) Two iteration loops based on the successive substitution are used
because of the nonlinearity of the equations.

(e) In each inner iteration loop, the value of ξ is fixed while each of equations
(7)-(9) is solved as a linear second-order boundary value problem of ODE
on the η domain. The inner iteration is continued until the nonlinear
solution converges for the fixed value of ξ.

(f) In the outer iteration loop, the value of ξ is advanced from 0 to 5. The
derivatives with respect to ξ are updated after every outer iteration step.

More details on the numerical scheme are explained in Gorla et al. (1993). The
numerical results are affected by the number of mesh points in both directions.
To obtain accurate results, a mesh sensitivity study was performed. In the η
direction, after the results for the mesh points 51, 100, 200 and 800 were
compared, it was found that 200 points gave the same results as 800. On the ξ
direction 51 mesh points were found to give accurate results. Therefore, the
computations were performed with ( 200 × 51) mesh points.

Asymptotic solution
Here, we investigate the boundary layer behavior at large distances away the
leading edge.
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We now define

(20)

Substituting expressions in equation (20) into equations (7)-(9) we have

(21)

(22)

(23)

on equations (21)- (23), a prime denotes differentiation with respect to χ. The
boundary conditions at χ = 0 are given by

(24)

we now set for the main layer equations (7)-(9) the following expansion:

(25)

Similarly for the inner layer equations (21)-(23) we have
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It may be easily verified that the main layer equations are given by

(27)

(28)

(29)

(30)

(31)

(32)

The boundary conditions are given by

(33)

The inner layer equations are given by

(34)

(35)

(36)

(37)
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(38)

(39)

The boundary conditions at χ = 0 are given by:

(40)

The solutions are given by

(41)

Where

(42)

(43)

(44)

(45)

(46)

For large values of ξ and small values of η, we may write for the outer layer

(47)

For large values of χ the inner layer solution is given by

(48)

From equations (47) and (48) we get
(49)

The shear stress and heat transfer rates may be computed by the following
equations:
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(50)

(51)

Discussion of results
Figures 1-3 display the distribution of velocity, angular velocity and
temperature within the boundary layer. As ∆ increases, we observe that the
velocity maximum decreases in amplitude and the location of the maximum
velocity moves farther away from the wall. The momentum and thermal

Figure 1.
Dimensionless
streamwise velocity
distribution

Figure 2.
Dimensionless
microrotation
distribution
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boundary layer thicknesses increases with ∆. The wall value of the
microrotation component decreases monotonically to zero at the boundary layer
edge. As ∆ increases, we observe that the temperature within the boundary
layer increases. The parameter ∆ is proportional to spin gradient viscosity of
the fluid microstructure. Increasing it results in flow retardation, which in turn
decreases the rate of heat transfer convected away from the heated wall.

Figure 4 shows that the rates of microrotation decrease as the Prandtl
number increases. The microrotation increases with ξ. 

Figure 3.
Dimensionless

temperature
distribution

Figure 4.
Dimensionless
microrotation

distribution
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Figures 5 and 6 display the numerical results for the local friction factor versus
ξ . As n increases, the friction factor increases whereas as ∆ increases, the
friction factor tends to decrease. The friction factor decreases as the Prandtl
number increases.

Figure 5.
Friction factor versus
dimensionless distance ξ

Figure 6.
Friction factor versus
dimensionless distance ξ
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Figures 7 and 8 show the results for the wall couple stress. As n increases, the
wall couple stress tends to increase whereas increasing values of ∆ tend to

Figure 7.
Wall couple stress

versus dimensionless
distance ξ

Figure 8.
Wall couple stress

versus dimensionless
distance ξ
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decrease it. Higher values of Prandtl number result in reduced wall couple
stress values.

Figures 9 and 10 show the results for the Nusselt number, we observe that
Nusselt number (dimensionless wall heat transfer rate) decreases as ∆

Figure 9.
Nusselt number 
versus ξ

Figure 10.
Nusselt number 
versus ξ
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increases. Similar behavior is observed as n increases. The heat transfer rate
increases as Prandtl number increases.

Tables I-VI display numerical results for the asymptotic solution for large
distances away from the leading edge. These results are plotted together with

∆ F0′′ (0) F1′′ (0) θ(0) θ1(0)

0.5 0.7177 0.4158 1.5278 0.3402
5 0.3996 0.1892 1.7591 0.3765
50 0.1257 0.0337 2.4578 0.3572

Table I.
Pr = 0.72 n = 0

∆ F0′′ (0) F1′′ (0) θ(0) θ1(0)

0.5 0.7177 0 1.5278 0
5 0.3996 0 1.7591 0
50 0.1257 0 2.4578 0

Table II.
Pr = 0.72 n = 0.5

∆ F0′′ (0) F1′′ (0) θ(0) θ1(0)

0.5 0.7177 –0.6237 1.5278 –0.5103
5 0.3996 –1.1355 –2.2592 –2.2592
50 0.1257 –1.7204 2.4578 –18.215

Table III.
Pr = 0.72 n = 1

∆ F0′′ (0) F1′′ (0) θ(0) θ1(0)

0.5 0.3133 0.2379 0.8740 0.3402
5 0.1723 0.1127 1.0477 0.3765
50 0.0528 0.0210 1.5310 0.3571

Table IV.
Pr = 6.7 n = 0

∆ F0′′ (0) F1′′ (0) θ(0) θ1(0)

0.5 0.3133 0 0.8740 0
5 0.1723 0 1.0477 0
50 0.0528 0 1.5310 0

Table V.
Pr = 6.7 n = 0.5

∆ F0′′ (0) F1′′ (0) θ(0) θ1(0)

0.5 0.3133 –0.3568 0.8740 –0.5103
5 0.1723 –0.6763 1.0477 –2.2593
50 0.0528 –1.0716 1.5310 –18.214

Table VI.
Pr = 6.7 n = 1
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numerical results of the nonsimilar problem presented in Figures 5-10. In all
cases, the agreement between the numerical and asymptotic solution is very
good.

Concluding remarks
In this paper, we have presented a boundary layer analysis for the flow of a
micropolar fluid over  a vertical plate with uniform surface heat flux conditions.
The governing equations are transformed into a set of nonsimilar parabolic
equations where numerical solution has been presented for a wide range of
parameters. An asymptotic solution is presented for large distances from the
leading edge of the plate. The numerical results indicated that the micropolar
fluids reduce drag and surface heat transfer rate.
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